Exploring the contrast effect for HD 189733 b

Wilson Cauley

In collaboration with Seth Redfield and Adam Jensen

Wesleyan University

06-12-2017

ERES III – Yale University

Can transmission signals be caused by the contrast effect in strong atomic lines?

HD 189733 b

-Hot Jupiter transiting an active star

2013

Cauley et al 2015

Cauley et al 2016

In-transit contrast effect

Hα contrast simulations

- Active stellar surface transits
- Randomly placed features
- Features to include:
 - Spots
 - Plage and faculae
 - Filaments
 - Photosphere
- Center to limb variations
- •Stellar rotation
- •Stellar RV variations (small)

Hα simulation spectra

Transit animations

Center-to-limb variations

Transiting a weakly active latitude

Transiting a very active latitude

Transiting off of a very active latitude

Summary and future work

- Contrast effect is non-negligible for active stars
- Specific configurations can reproduce HD 189733 b Hα signal
 - Large faculae/plage coverage
 - Very large emission strength, 4x line core
 - Concentrated latitudinal distribution
- Favor the planetary absorption interpretation
 - Cannot explain pre- and post-transit signals
 - $H\alpha$ atmosphere modeling Huang et al., under review
 - WASP-12 b detection!
 - Extend to other lines Na I D, Ca II H & K, K, Mg I
- Better understand local active region emission (!)