Accounting for Chromatic Atmospheric Effects on Barycentric Corrections

Ryan Blackman

Andrew Szymkowiak, Debra Fischer, and Colby Jurgenson

6-13-2017

Barycentric Correction observed radial velocities to a frame that is at rest WRT the barycenter of the solar system

$$z_{\text{true}} = (1 + z_{\text{meas}})(1 + z_B) - 1$$

Need the time of observation for accurate barycentric corrections

$$z_B \approx \left(\gamma_{\oplus} \frac{1 + \vec{\beta}_{\oplus} \cdot \hat{\rho}}{1 + z_{\text{GR}}}\right) \left(\frac{(1 + \vec{\beta}_s \cdot \hat{r}_0)}{1 + \vec{\beta}_s \cdot \hat{\rho}}\right) - 1 - z_{\text{LT}} - z_{\text{SD}}$$

All changing in time!

Wright & Eastman 2014

Exposure Meter A Measures flux throughout an observation so that the barycentric correction can be weighted

Atmospheric transmittance changes as a function of air mass and wavelength

$$T_{\rm atm}(\lambda) = e^{-X\kappa(\lambda)}$$

The barycentric correction is a function of wavelength!

Chromatic atmospheric impact on barycentric corrections from simulated observations

Chromatic atmospheric impact on barycentric corrections from simulated observations

Variations in components of atmospheric attenuation

Changes in atomic and molecular absorption and scattering, aerosols, and clouds can impact atmospheric transmittance

ko [mag/airmass] 0.15 0.00 0.05

0.00

c)

4000

5000

6000

Buton+ 2013

Exposure meter integration error

We choose an integration length for the exposure meter, and assume all photons arrived at the midpoint of each integration

- Accounting for chromatic atmospheric effects on barycentric corrections is important for precision radial velocity measurements for exoplanet discovery and characterization
- Use of a multiple-channel exposure meter with at least four wavelength channels and integration times on the order of seconds can account for these effects

EXPRES exposure meter

R = 250

R = 150,000
