Precision Photometry for Exoplanet Atmospheric Characterization with WIRC-POL

Leo Liu (Penn State)

WIRC-POL Team: Jason Wright, Ming Zhao, Heather Knutson, Avi Shporer, Björn Benneke, Dimitri Mawet, Ricky Nilsson, Max Millar-Blanchaer, Kaew Tinyanont, Jennifer Milburn Why do we need high precision photometry?

Detecting shallower transits and eclipses

Measuring better transit and eclipse parameters

Enabling reliable ground based follow-up

Breaking model degeneracies

WIRC-POL

Newly commissioned instrument on the Hale Telescope

Diffuser-mode

Grism-mode

Broadband photometry J, H, K diffuser-assisted

> Spectroscopy J, H, K with R~200

Polarizing Grating-mode

Spectro-polarimetry J, H with R~100-150 Simultaneous Stokes Q, U measurements

Why WIRC-POL?

Wide field: 8.4 arcmin by 8.4 arcmin (more comparison stars)

Novel diffuser-assisted photometry (smoother and steadier images)

Large telescope size: 5m telescope (smaller photon-noise limit)

Ways to improve photometric precision

Better guiding

Better detector calibration

Steadier PSF

Guiding

Need precise guiding to minimize pointing errors

(Zhao et al. 2012)

Detector Calibration

(Zhao et al. 2014)

In NIR detectors, nonlinearity is both count-dependent and flux-dependent.

Detector Calibration

Shallow transits (<1000 ppm) will be much harder to detect if the nonlinearity effect is not corrected.

(Zhao et al. 2014)

Stable PSF

Advantages of diffuser

Stabilize the PSFs of targets

Improve the observing efficiency

Minimize the flat-fielding error

(credit: RPC photonics)

(credit: Ming Zhao)

Stable PSF

Diffuser stables the PSF much better than the other two techniques.

K2-3b (J band, 1.1 to 1.4 micron)

super-Earth transiting a nearby M dwarf

transit depth: ~1200 ppm

ingress not observed

Lessons learned

Refocus the telescope when the outside temperature changes by a lot.

WASP-12b (Ks band, 2.0 to 2.4 micron)

Ks band observations useful for determining water presence

> 3090 ppm in Ks (Croll et al. 2011)

K2-19b (J band, 1.1 to 1.4 micron)

K2-19b/c close pair of exoplanets in a 3:2 mean motion resonance

TTV detections could constrain the masses better

completely missed the transit due to large TTV ~5 hours

Precision achieved

400 ppm in 30 min

1.4 times above the photon-noise limit in Ks (WASP-12b)

Comparison to the old WIRC

WIRC 2013 (before <u>explosive debonding</u> credit: Ming Zhao)

100 ppm in 30 min

Comparable to Spitzer precision for a Ks = 10 star

Future perspectives

- Characterizing the nonlinearity
 - Improve the precision even better
- Observe more targets (summer and fall)
 - WASP-103b, WASP-69b, WASP-74b, TRAPPIST-1b, c, d, e, Kepler-29b and Kepler-36c
- WIRC-POL will be a prime ground based facility for TESS/ JWST follow-up in the near future