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What is a “habitable planet”?
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What is a “habitable planet”?

This is not so simple.
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Photo by CEphoto, Uwe Aranas, via Wikimedia Commons
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Photo by user brewbooks, via Wikimedia Commons
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Photo by Paxton Woelber, via Wikimedia Commons
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What is a “habitable planet”?

Liquid water on the surface
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What is a “habitable planet”?

Liquid water on the surface

The Habitable Zone:

Inner edge: Transition to Venus: all water is vapor; 
water loss ensues.

Outer edge: Too cold to avoid total glaciation—adding 
CO

2
 decreases temperature further
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What is a “habitable planet”?

● Liquid water on the surface

The Habitable Zone:

Warm edge: Transition to Venus: all water is vapor; 
water loss ensues.

Cold edge: Too cold to avoid total glaciation—adding 
CO

2
 decreases temperature further

We use these constraints to define the Habitable Zone in 
multiple dimensions of parameter space
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Climate Stability in the Habitable Zone

● Thermal stability: Energy in = Energy out; Surface temperatures 
more or less stable on decade timescales.

● Weathering stability: CO
2
 in = CO

2
 out; Greenhouse effect stable on 

kyr-Myr timescales.
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Climate Stability in the Habitable Zone

● Carbon-silicate cycle: CO2 drawdown through weathering processes; 
outgassing via volcanic processes

W=( pCO2)
β×(P)α×exp [kact∗(T s−T 0)] T

s
 > 273.15 K

Δ pCO2

Δ t
 = Outgassing - Weathering

Δ pCO2

Δ t
Equilibrium when               = 0
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Climate Stability in the Habitable Zone

● Carbon-silicate cycle: CO2 drawdown through weathering processes; 
outgassing via volcanic processes

CO
2

● Chemical Reaction:
➢ Temperature
➢ CO

2
 Supply

● Delivery: Rainfall

● Burial:
➢ Liquid surface water
➢ Exposed land

Ingredients:

W=( pCO2)
β
×(P)

α
×exp [kact∗(T s−T 0)] T

s
 > 273.15 K

H
2
CO

3

Ca2+, HCO
3
--, SiO

2
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Climate Stability in the Habitable Zone

● Carbon-silicate cycle: CO2 drawdown through weathering processes; 
outgassing via volcanic processes

CO
2

● Chemical Reaction:
➢ Temperature
➢ CO

2
 Supply

● Delivery: Rainfall

● Burial:
➢ Liquid surface water
➢ Exposed land
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PlaSim: 3D climate model for simulating Earth-like planets

● Uses spectral transforms to solve for vorticity, temperature, divergence, 
and pressure

● T21 resolution: 64 longitudes x 32 latitudes (~5.6˚ at equator)

● 10 vertical pressure levels

● 50-meter mixed-layer slab ocean model

● Thermodynamic sea ice

● Bucket model + runoff for soil hydrology

● Convection, clouds, and precipitation

● Longwave and shortwave radiative transfer

Fraedrich, et al (2005)

http://edilbert.github.io/PLASIM/

http://edilbert.github.io/PLASIM/
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Thermal Stability Weathering Instability
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What if weathering happens even 
during snowball?
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Stable Snowballs

Temperate Habitable Zone
Limit 

Cycles
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If snowballs are totally glaciated, 

and weathering requires Ts > 273.15 K, 

how can this be?
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Does this make sense?
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Does this make sense?
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What does this imply?

Snowball planets may have regional and 
seasonal habitable conditions, with rainfall and 

moderate temperatures of 10 ˚C or more
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What if the obliquity were 0˚, and land 
was on the equator?



  

ERES-III ~ June 12, 2017

What if the obliquity were 0˚, and land 
was on the equator?
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Persistent and Stable Temperate 
Conditions on a Snowball Planet
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Conclusions

● Long-term negative feedbacks are important for 
characterizing the habitable zone

● Snowball conditions may be common in the 
habitable zone

● Snowball conditions do not preclude temperate 
refuges on land

● Snowball conditions are not necessarily a limit 
on the habitable zone
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Caveats

● PlaSim doesn't have a dynamical glacier model—snow just piles up
➢ Glaciers reach thicknesses of 100s of meters to kilometers; have significant 

effect on atmospheric circulation and temperature
➢ Sea level change due to ice buildup is ignored

● Simplified slab ocean model, rather than dynamical ocean transport model

● Neglect CO
2
 condensation at high pCO

2
 or in cold traps (Abbot 2016)

● Neglect feedbacks between temperature, plate speed, uplift, erosion
➢ No tectonic model at all

● Lack a sophisticated model of soil type, rock properties, topography, and 
erosion

● Neglect weathering-albedo feedbacks—weathered basalt has a different 
albedo than unweathered basalt 

● Neglect sea-floor weathering
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Does this make sense?

What about weatherable supply?

➢ Snowballs might have low erosion—does that limit weathering?

➢                                                                      (West 2012; Foley 2015)

 W
k
 is the kinetic weathering – weathering not limited by supply

 W
max

 is the maximum weathering possible given an erosion rate:
W

max
     Erosion rate

W=W max×[1−exp(−W k /W max)]

∝
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If we do consider various erosion rates:
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If we do consider various erosion rates:

1 mm/kyr ~ Erosion of bare bedrock on 
            alpine summits (Small et al, 1997)
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If we do consider various erosion rates:

Note: glaciers, ice, and freeze-thaw cycles 
         can cause dramatic erosion
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